Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 272: 107349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061191

RESUMO

The purpose of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is to establish a legally binding ban on nuclear weapon test explosions or any other nuclear explosions. The Preparatory Commission for the CTBT Organization (CTBTO PrepCom) is developing the International Monitoring System (IMS) that includes a global network of 80 stations to monitor for airborne radionuclides upon entry into force of the CTBT. All 80 radionuclide stations will monitor for particulate radionuclides and at least half of the stations will monitor for radioxenon. The airborne radionuclide monitoring is an important verification technology both for the detection of a radionuclide release and in the determination of whether the release event originates from a nuclear explosion as opposed to an industrial use of nuclear materials. Nuclear power plants and many medical isotope production facilities release radioxenon into the atmosphere. Low levels of a few particulate isotopes, such as iodine, may also be released. Detections of multiple isotopes are useful for screening the radionuclide samples for relevance to the Treaty. This paper examines the anticipated joint detections in the IMS of noble gas and particulate isotopes from underground nuclear explosions where breaches in the underground containment vents from low levels to up to 1% of the radionuclide inventory of the resulting fission products to the atmosphere. Detection probabilities are based on 844 simulated release events spaced out at 17 release locations and one year in time. Six different release (venting) scenarios, including two fractionated scenarios, were analyzed. When ranked by detection probability, 11 particulate isotopes and one noble gas isotope (133Xe) appear in the top 20 isotopes for all six release scenarios. Using the 11 particulate isotopes and the one noble gas isotope, the IMS has nearly the same detection probability as when 45 particulate and 4 noble gas isotopes are used. Thus, a limited list of relevant radionuclides may be sufficient for treaty verification purposes. The probability that at least one particulate and at least one radioxenon isotope would be detected in the IMS from the release events ranged from 0.15 to 0.86 depending on the release scenario.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radioisótopos de Xenônio/análise , Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/métodos , Radioisótopos , Aerossóis
2.
J Environ Radioact ; 251-252: 106963, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35868224

RESUMO

Since about 2000 (Bowyer et al., 1998), radioxenon monitoring systems have been under development and testing for the verification of the Comprehensive Nuclear Test-Ban Treaty (CTBT). Operation of the systems since then has resulted in development of a next-generation of systems that are nearly ready for operational deployment. By 2010, the need to screen out civilian sources was well known (Auer et al., 2010; Saey, 2009), and isotopic ratio approaches were soon considered (Kalinowski and Pistner, 2006) to identify specific sources. New generation systems are expected to improve the ability to verify the absence of nuclear tests by using isotopic ratios when multiple isotopes are detected. In this work, thousands of releases were simulated to compute the global detection probability of 131mXe, 133mXe, 133Xe, and 135Xe at 39 noble gas systems in the International Monitoring System (IMS) for both current and next-generation systems. Three release scenarios are defined at 1 h, 1 d, and 10 d past a 1 kt TNT equivalent 235U explosion event. Multiple cases using from one part in a million to the complete release of the xenon isotopic activity are evaluated for each scenario. Coverage maps and global integrals comparing current and next-generation monitoring systems are presented showing that next-generation noble gas systems will create measurable improvements in the IMS. The global detection probability for 133Xe is shown to be strong in all scenarios, but only modestly improved by next-generation equipment. However, the detection probability for 131mXe and 133mXe increased to about 50% in different scenarios, providing a second detectable isotope for many events. As anticipated from shorter sampling intervals, the expected number of detecting samples roughly doubled and the expected number of detecting stations rose by approximately 50% for all release scenarios. Thus, it might be anticipated that future events would consist of multiple 133Xe detections and one or more second isotope detections. Signals of this nature should increase detection confidence, tighten release location estimates, improve rejection of civilian signals, and lessen the impacts from individual systems being offline for maintenance or repair reasons.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Poluentes Radioativos do Ar/análise , Isótopos , Monitoramento de Radiação/métodos , Xenônio/análise , Radioisótopos de Xenônio/análise
3.
J Environ Radioact ; 243: 106809, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34995997

RESUMO

A method was developed to measure trace noble gas element adsorption to the surfaces of geologic materials in the presence of a background gas that could potentially compete for surface adsorption sites. Adsorption of four noble gas elements (Ne, Ar, Kr, and Xe) at a concentration of 100 ppm in helium and nitrogen were measured on a sample of crushed tuff at 0, 15, 30, and 45 °C. In addition, Ne, Ar, Kr, and Xe at 250 ppm and 500 ppm in nitrogen at 15 °C were measured. Noble gas adsorption was found to increase with increasing atomic mass and decreasing temperature. It was also observed that the relative increase in noble gas element adsorption with decreasing temperature tends to increase with increasing atomic mass. As the noble gas concentrations in nitrogen increased, adsorption increased in a slightly non-linear fashion which could be modeled using a Freundlich isotherm. For noble gas concentrations that were ≤100 ppm Henry's Law constant were calculated.


Assuntos
Monitoramento de Radiação , Adsorção , Geologia , Nitrogênio
4.
J Environ Radioact ; 225: 106439, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33010633

RESUMO

A Bayesian source-term algorithm recently published by Eslinger et al. (2019) extended previous models by including the ability to discriminate between classes of releases such as nuclear explosions, nuclear power plants, or medical isotope production facilities when multiple isotopes are measured. Using 20 release cases from a synthetic data set previously published by Haas et al. (2017), algorithm performance was demonstrated on the transport scale (400-1000 km) associated with the radionuclide samplers in the International Monitoring System. Inclusion of multiple isotopes improves release location and release time estimates over analyses using only a single isotope. The ability to discriminate between classes of releases does not depend on the accuracy of the location or time of release estimates. For some combinations of isotopes, the ability to confidently discriminate between classes of releases requires only a few samples.


Assuntos
Poluentes Radioativos do Ar/análise , Monitoramento de Radiação , Teorema de Bayes , Centrais Nucleares , Radioisótopos de Xenônio/análise
5.
J Environ Radioact ; 204: 111-116, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31004863

RESUMO

Algorithms that estimate the location and magnitude of an atmospheric release using remotely sampled air concentrations typically involve a single chemical or radioactive isotope. A new Bayesian algorithm is presented that makes discrimination between possible types of releases (e.g., nuclear explosion, nuclear power plant, or medical isotope production facility) an integral part of the analysis for samples that contain multiple isotopes. Algorithm performance is demonstrated using synthetic data and correctly discriminated between most release-type hypotheses, with higher accuracy when data are available on three or more isotopes.


Assuntos
Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/métodos , Liberação Nociva de Radioativos/classificação , Radioisótopos de Xenônio/análise , Algoritmos , Teorema de Bayes , Explosões , Resíduos de Serviços de Saúde , Centrais Nucleares , Monitoramento de Radiação/instrumentação
6.
J Environ Radioact ; 178-179: 127-135, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28818645

RESUMO

The Comprehensive Nuclear-Test-Ban Treaty bans all nuclear tests and mandates development of verification measures to detect treaty violations. One verification measure is detection of radioactive xenon isotopes produced in the fission of actinides. The International Monitoring System (IMS) currently deploys automated radioxenon systems that can detect four radioxenon isotopes. Radioxenon systems with lower detection limits are currently in development. Historically, the sensitivity of radioxenon systems was measured by the minimum detectable concentration for each isotope. In this paper we analyze the response of radioxenon systems using rigorous metrics in conjunction with hypothetical representative releases indicative of an underground nuclear explosion instead of using only minimum detectable concentrations. Our analyses incorporate the impact of potential spectral interferences on detection limits and the importance of measuring isotopic ratios of the relevant radioxenon isotopes in order to improve discrimination from background sources particularly for low-level releases. To provide a sufficient data set for analysis, hypothetical representative releases are simulated every day from the same location for an entire year. The performance of three types of samplers are evaluated assuming they are located at 15 IMS radionuclide stations in the region of the release point. The performance of two IMS-deployed samplers and a next-generation system is compared with proposed metrics for detection and discrimination using representative releases from the nuclear test site used by the Democratic People's Republic of Korea.


Assuntos
Poluentes Radioativos do Ar/análise , Armas Nucleares , Monitoramento de Radiação/métodos , Radioisótopos de Xenônio/análise , República Democrática Popular da Coreia
7.
J Environ Radioact ; 167: 249-253, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27887970

RESUMO

Air samples were taken at various locations around The University of Texas at Austin's TRIGA Mark II research reactor and analyzed to determine the concentrations of 37Ar, 41Ar, and 133Xe present. The measured ratio of 37Ar/41Ar and historical records of 41Ar releases were then utilized to estimate an annual average release rate of 37Ar from the reactor facility. Using the calculated release rate, atmospheric transport modeling was performed in order to determine the potential impact of research reactor operations on nearby treaty verification activities. Results suggest that small research reactors (∼1 MWt) do not release 37Ar in concentrations measurable by currently proposed OSI detection equipment.


Assuntos
Argônio/análise , Reatores Nucleares , Monitoramento de Radiação , Poluentes Radioativos/análise , Pesquisa
8.
J Environ Radioact ; 135: 94-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24811887

RESUMO

The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and (133)Xe data from three IMS sampling locations to estimate the annual releases of (133)Xe from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8 × 10(14) Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 2.2 × 10(16) to 2.4 × 10(16) Bq, estimates for the facility in Indonesia vary from 9.2 × 10(13) to 3.7 × 10(14) Bq and estimates for the facility in Argentina range from 4.5 × 10(12) to 9.5 × 10(12) Bq.


Assuntos
Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/métodos , Radioisótopos de Xenônio/análise , Austrália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...